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An algorithm has been developed for incorporating the effects of temperature into
lattice Boltzmann simulations. Instead of modeling the internal energy as a moment
of the distribution describing the flow of mass and momentum, the internal energy is
modeled as a scalar field using a second distribution. The energy is then coupled to the
density and momentum via the partition between moving and nonmoving particles
in a conventional two-speed model. The algorithm is tested against a number of sys-
tems for which analytic results are available. These include nonuniform conductivity
between two plates, entry length behavior for flow in a channel between two par-
allel plates, and critical Rayleigh number behavior in Rayleigh–B´enard convection.
Quantitative agreement is found in all cases.c© 2000 Academic Press

1. INTRODUCTION

Lattice Boltzmann algorithms have recently begun to receive considerable attention as
an alternative to conventional computational fluid dynamics for simulating fluid flow in
certain classes of problems. These algorithms are based on the idea of trying to model a
fluid by simulating a discretized one-particle phase space distribution function similar to the
one described by the traditional Boltzmann equation. Describing a one-particle distribution
function at each point in space requires more information than just specifying the usual
hydrodynamic fields. However, the ease of implementing boundary conditions for complex
geometries makes lattice Boltzmann simulations attractive candidates for studying flow in
porous media and the local nature of the algorithms allows them to be easily adapted to
parallel architecture computers. Lattice Boltzmann simulations with good stability prop-
erties have been developed that can quantitatively reproduce isothermal incompressible
Navier–Stokes flow [1, 2].
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There has also been a great deal of interest in developing algorithms that can model
thermal transport in addition to mass flow, but incorporating the effects of temperature into
lattice Boltzmann simulations has proven to be unexpectedly difficult. The most obvious
approach, in analogy to the traditional Boltzmann equation, is to define the internal energy
to be a moment of the lattice Boltzmann distribution. An algorithm of this type based on
multiple lattice speeds has been described [3], but it has poor stability properties [4] and
can only simulate one value of the Prandtl number Pr (the ratio of kinematic viscosity
to thermal diffusivity). An additional problem is that it may not be possible to model
systems with nonideal gas thermodynamics. This algorithm has been generalized, at least
in two dimensions, so that arbitrary Prandtl numbers can be simulated [4–6]. A second
approach to modeling thermal flow using lattice Boltzmann techniques treats temperature
as a passive diffusing scalar [7, 8]. This has the advantage of simplicity and can easily
handle an arbitrary value of the Prandtl number but it cannot be used, except in anad hoc
way, for systems where there are significant changes in fluid density with temperature. Very
recently, a two-distribution algorithm has been proposed by Heet al. [9] that is similar to
the two-distribution approach outlined below. However, this model is limited to systems
with ideal gas thermodynamics.

This paper will present a detailed derivation of a new lattice Boltzmann algorithm for
simulating thermal transport in fluid systems [10]. Quantitative comparisons of lattice
Boltzmann simulations with analytic results for several thermal flow problems are also
presented. The internal energy of the system in this algorithm is described by a second dis-
tribution that models the energy as a conserved scalar quantity, similar to the density. The
internal energy can then be coupled back to the velocity and momentum fields in a relatively
straightforward way. The hydrodynamic equations generated by this model are very close
to the standard hydrodynamic equations of continuum fluid dynamics in the absence of
viscous dissipation, and the algorithm naturally incorporates the thermodynamic properties
of the fluid. Simulations on several test systems give quantitative agreement with analytic
results.

2. THERMAL LATTICE BOLTZMANN MODEL

Lattice Boltzmann simulations are an alternative to classical fluid dynamics that model
fluid flow by simulating the behavior of the one-particle distribution function, instead of
solving the usual continuum hydrodynamic equations for the conserved fields [11]. The
original Boltzmann equation describes the behavior of the one-particle distribution function
f (r , v, t), where f represents the probability of finding a fluid particle at the pointr at
time t , moving with velocityv. If this function is known, then local values of the density,
momentum, and temperature can be found by evaluating moments off and these can
be used to reconstruct any other local thermodynamic properties through the equation
of state. Instead of a continuous functionf , the lattice Boltzman distribution function is
discretized so that space is divided up into a regular lattice and the velocities are represented
by a finite number of displacements to neighboring sites. The displacement vectors are
denoted by1tei ,wherei = 1, . . . ,b,1t is the time step, andb represents the total number
of displacement directions. Theei have units of velocity and their magnitude is|ei | = c. A
zero displacement vectore0 is included in the set to represent particles with zero velocity.
The derivations described below assume that the lattices represented by the vectorsei are
suitably symmetric so that the tensors

∑b
i=1ei ei and

∑b
i=1ei ei ei ei are isotropic. As has been
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pointed out by several authors, suitably isotropic lattices are known only in two and four
dimensions [12, 13]. However, three-dimensional simulations can be recovered by using a
four-dimensional lattice and making the system completely uniform along one dimension.

Two sets of distributions,fi andFi , are assigned to each site. The distributionfi models
the transport of mass and momentum and satisfies the two moment relations

ρ =
b∑

i=0

fi (2.1)

ρu =
b∑

i=1

ei fi , (2.2)

whereρ is the mass density andu is the macroscopic velocity of the fluid. The distribution
Fi models the movement of internal energy around the system and satisfies the moment
relation

ρε =
b∑

i=0

Fi , (2.3)

whereε is the specific energy per unit mass. Using a second distribution to model the energy
is similar to the passive scalar approach proposed by Rendaet al.[14] and later by Shan [8].
However, this model differs from the passive scalar approach in that changes in the energy
densityρε are implicitly coupled back to the density–momentum distribution.

The distributions are updated at each time step by first performing a collision to obtain
a new set of distributions and then displacing thefi and Fi along the vectorei to get a
new set of distributions at each site. The collisions and displacement of the distributions are
summarized by the equations of motion

fi (r +1tei , t +1t)− fi (r , t) = − 1

τρ

(
fi (r , t)− f eq

i (r , t)
)

(2.4)

Fi (r +1tei , t +1t)− Fi (r , t) = − 1

τε

(
Fi (r , t)− Feq

i (r , t)
)
, (2.5)

where ther are lattice sites andt is the discrete time. Following Chenet al. [15], the
collision operators are assumed to take the familiar BGK form [16] and are characterized
for the two distributions by the dimensionless relaxation parametersτρ andτε . Because
there is no explicit coupling between the equations of motion for thefi and Fi , the total
internal energy of the system is a conserved quantity, implying that there is no viscous
heating in the system. For many problems of practical importance, the contribution from
viscous heating is small.

To completely describe the algorithm, the equilibrium distributionsf eq
i andFeq

i need to
be specified

f eq
i =

ρ(1− d0)

b
+ ρD

bc2
ei · u+ ρD(D + 2)

2bc4
u · ei ei · u− ρD

2bc2
u · u (2.6)

f eq
0 = ρd0− ρ

c2
u · u (2.7)

Feq
i = ε f eq

i (2.8)

Feq
0 = ε f eq

0 . (2.9)
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The variableD is the dimension of the system andd0 is a parameter that will be described
in more detail below. Thef eq

i are identical to those developed for simulating a multiphase–
multicomponent system [17], except that in this modeld0 is not a constant. The choice of
equilibrium distribution for theFi means that at equilibrium, the energy flux is proportional
to the mass flux.

From the equilibrium distributions (2.6) and (2.7) it can be seen that the parameterd0

controls the partition between fast and slow moving particles. If the distributionfi can
be considered to be a crude approximation to the Maxwell–Boltzmann distribution for the
velocities of individual fluid particles, then as the temperature rises the velocity distribution
broadens and the fraction of particles assigned to thefi increases relative to the fraction
assigned tof0. This can only happen ifd0 decreases. Similarly, as the temperature decreases,
the fraction of particles assigned tof0 increases andd0 increases. This suggests thatd0 is
related to the local values of the density and specific energy through the temperatureT . (If
the specific energyε and the densityρ are known at a given lattice site, then in principle
the temperature and pressure can be calculated once the equation of state is specified.) As
will be shown below, assuming thatd0 is related to energy and density only through the
temperature turns out to be too restrictive, and better results can be obtained by treating
d0 as a general function ofε andρ. By constructing a model connectingd0 to ε andρ,
it is possible to incorporate the effects of thermal flow into a lattice Boltzmann algorithm
consisting of the following steps:

(i) Calculateρ, u andε at each site using the moment relations (2.1)–(2.3).
(ii) Based on the value ofρ andε, calculate the value ofd0 at each site via some as yet

unspecified relation.
(iii) Evaluate f eq

i andFeq
i at each site and complete the collision step.

(iv) Translate thefi andFi .

The key feature of this algorithm is thatd0 is allowed to vary as a function of the local
thermodynamic conditions at each site. This provides an implicit coupling between the two
distributions fi andFi .

The macroscopic hydrodynamic equations generated by this model can be derived using
the Chapman–Enskog multiple time scale expansion[12]. Details of this derivation are
supplied in the Appendix. The continuum equations for mass, momentum, and energy that
result from this analysis have the form

∂

∂t
ρ + ∂α(ρuα) = 0 (2.10)

∂

∂t
(ρuα)+ ∂β(ρuαuβ) = −∂αρ(1− d0)

c2

D
− ∂αζ∂β(ρuβ)+ ∂αξρuβ∂βε

+ ∂βν∂β(ρuα)+ ∂βν∂α(ρuβ)+ ∂αν∂β(ρuβ) (2.11)

∂

∂t
(ρε)+ ∂α(ρεuα) = ∂ακ∂αε. (2.12)

The Greek indices label spatial coordinates and the Einstein convention of summing over
repeated indices is used. The transport coefficientsν, ζ , ξ , andκ are defined as

ν = 1t

(
τρ − 1

2

)
c2

D + 2
(2.13)
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ζ = 1t

(
τρ − 1

2

)(
c2

D
(1− d0)− c2

D
ρ
∂d0

∂ρ

)
(2.14)

ξ = 1t

(
τρ − 1

2

)
c2

D

∂d0

∂ε
(2.15)

κ = 1t

(
τε − 1

2

)
c2

D
ρ(1− d0). (2.16)

The coefficientν is the kinematic viscosity andκ is related to the thermal conductivity.
Becauseν andκ depend on the independent functionsτρ andτε , the Prandtl number, which
is proportional to the ratio ofν andκ, can be set to an arbitrary value. Comparing Eq. (2.14)
with the conventional momentum equation from hydrodynamics indicates that the pressure
can be identified with the quantity

p(ε, ρ) = ρ(1− d0(ε, ρ))
c2

D
. (2.17)

This can be trivially inverted to obtaind0 as a function ofε andρ. For an ideal gas,d0 is a
linear function ofε (or T), but for more complicated fluidsd0 depends on bothε andρ.

The exact interpretation of the remaining transport coefficientsζ andξ is not so clear.
The term –∂αζ∂βρuβ can be combined with the term∂αν∂βρuβ to give a kinematic bulk
viscosity ofν − ζ [18]. This value of the bulk viscosity cannot be varied independently of
the value ofν, because the valuesτρ andd0 are already constrained by the requirements
that they generate the correct values ofν and the equation of state. However, for most
systems the effect of the bulk viscosity is small. Both terms can be made small by adusting
the time step1t . For a given physical problem with a fixed grid, the time step can be
made smaller by decreasing1t while simultaneously increasing the lattice speedc. The
relaxation parametersτρ andτε must also be adjusted so that the dissipation coefficientsν

andκ remain constant. Using Eq. (2.17) ford0, the coefficientsζ andκ can be rewritten
as

ζ = 1t

(
τρ − 1

2

)
∂p

∂ρ
(2.18)

ξ = −1t

(
τρ − 1

2

)
1

ρ

∂p

∂ε
. (2.19)

Note that neither of these expressions is proportional toc2 while ν is. Thus, if a smaller
time step is used, corresponding to a larger value ofc, then the terms containingζ and
ξ must become smaller relative to the viscous dissipation term. For small enough1t , the
momentum equation will reduce to

∂

∂t
(ρuα)+ ∂β(ρuαuβ) = −∂αρ(1− d0)

c2

D
+ ∂βν∂β(ρuα)

+ ∂βν∂α(ρuβ)+ ∂αν∂β(ρuβ). (2.20)

This is just the usual momentum equation for fluid flow [11], although in this case the
kinematic bulk viscosity is equal to the kinematic shear viscosity.
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3. BOUNDARY CONDITIONS

The formalism described here for implementing boundary conditions is a modification of
the bounce-back boundary condition, similar in spirit to the boundary conditions developed
by Maier et al. [19] and Zou and He [20]. It assumes that all boundaries pass through a
set of lattice sites that are connected to each other via the displacement vectors,1tei . The
approach is illustrated in detail for a flat interface using the two-dimensional orthogonal
lattice; the generalization to other lattices and surfaces with corners, kinks, etc. will be
discussed briefly. The boundary conditions used in this study fall into two categories, either
a value is specified on the boundary (Dirichlet conditions) or a flux is specified on the
boundary (Neumann conditions). For fluid flow these become specified pressure (density)
and specified velocity, for the energy these become specified temperature and specified
energy flux.

Dirichlet boundary conditions are illustrated for thefi by specifying a constant density
at a boundary node. The method for specifying a constant energy at a boundary node using
the Fi is completely analogous. The distributionfi at the node must satisfy the condition

ρ0 =
b∑

i=0

fi , (3.1)

whereρ0 is the specified density. The geometry for a boundary node on a flat interface for
the two-dimensional orthogonal lattice is illustrated in Fig. 1. The node at the center is the
boundary node of interest and is labeled node 0, the neighboring nodes are labeled nodes
1–8. Nodes 1–3 are exterior nodes lying outside the fluid region that are used to help fix the
boundary conditions at node 0, nodes 4 and 8 are two adjacent boundary nodes, and nodes
5–7 are fluid nodes that stream part of their distributions to node 0. The distributions on
nodes 1–3 need to be specified after the collision step but before the streaming step. Only
the parts of the distributions on nodes 1–3 that are streamed to node 0 need to be specified.

For the remaining discussion, the following notation is useful. The displacement direc-
tions are labeled byi = 1, . . . ,8 and correspond to the eight neighbors of node 0 shown
in Fig. 1. The distributionfi ( j ) refers to the distribution on nodej in the directioni .
The portion of the distribution on node 1 that streams towards node 0 is thenf5(1). The

FIG. 1. Schematic diagram of boundary node for a flat boundary using the two-dimensional orthogonal lattice.
The node at the center is node 0.
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determination of the distributions on 1–3 consists of two steps. The first consists of pairing
up each of the exterior nodes with its mirror image through node 0. Thus, node 1 is paired
with node 5, node 2 is paired with node 6, and node 3 is paired with node 7. If the distribution
at node 0 satisfies the boundary condition (3.1) before the streaming step, then to a first
approximation the boundary condition after the streaming step is satisfied by requiring that
the sum of the two opposingfi leaving the boundary node equals the sum of the twofi
entering the boundary node. For the 1–5 pair, this is equivalent to the expression

f5(1)+ f1(5) = f5(0)+ f1(0).

Only the f5(1) term is unknown, so this equation can be used to findf5(1). Similar expres-
sions can be used to findf6(2) and f7(3). If there was no net contribution to the density due
to flow along the boundary, then these values forf5(1), f6(2), and f7(3) would be enough
to ensure that condition (3.1) holds after the streaming step. However, because there is no
guarantee thatf8(4)+ f4(8)= f8(0)+ f4(0), the distributions at nodes 1–3 must be ad-
justed slightly to correct for the change in density due to flow along the boundary. This
correction is the second step in determining the distributions at the exterior points.

The change in the density due to flow along the boundary is labeled as

1ρ = f8(4)+ f4(8)− f8(0)− f4(0).

The change in density is distributed among the distributions on nodes 1–3 by an amount
that is proportional to the weight that each lattice direction carries. To understand what
these weights are, it is necessary to briefly consider what happens when the original
four-dimensional hypercubic face-centered (HCFC) lattice is projected down into the two-
dimensional orthogonal lattice. The nearest-neighbor sites of the HCFC lattice consist of
all possible four-dimensional vectors with integer components whose total length is

√
2.

This includes vectors such as (1, 1, 0, 0), (1,−1, 0, 0), and (0,−1, 0,−1). Four of the
original HCFC vectors project down to each of the axial vectors in the two-dimensional
orthogonal lattice, while only one of the original HCFC vectors projects down to each of
the diagonal lattice vectors. Thus, the weightwi assigned to each of these directions is
w1=w3=w5=w7= 1 andw2=w4=w6=w8= 4. Defining

wtot = w5+ w6+ w7

then the final expressions forf5(1), f6(2), and f7(3) are

f5(1) = f5(0)+ f1(0)− f1(5)−1ρw5/wtot

f6(2) = f6(0)+ f2(0)− f2(6)−1ρw6/wtot

f7(3) = f7(0)+ f3(0)− f3(7)−1ρw7/wtot.

The method for specifying a flux-type boundary condition is similar to that for specifying
a density-type boundary condition, although correcting the distributions for the flow along
the boundary is more complicated. A general method for evaluating the correction due to
flow along the boundary has not been worked out, but the correction for the specific case
of a flat boundary is described below. The method is illustrated for the distributionfi for
the case when the velocityu has a valueu0 at a surface. Prior to streaming, the momentum
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density at the surface has the value

ρu0 =
b∑

i=1

ei fi . (3.2)

Pairing the product of thefi andei means that pairs such as the distributions at nodes 1 and
5 must satisfy an equation of the form

f5(1)− f1(5) = f5(0)− f1(0).

The difference occurs instead of the sum becausee1=−e5. The change in momentum at
node 0 due to flow along the boundary is

1ρu = e4 f4(8)+ e8 f8(4)− e4 f4(0)+ e8 f8(0). (3.3)

There will also be a slight change in the density at node 0 after the streaming step to a new
densityρ ′, which causes an additional change in the momentum. However, in most cases it
can be assumed that this change is small and thatρ ′ ∼ ρ. From Eq. (3.3), it is clear that1ρu
is parallel to the surface. Therefore, the correction tof6(2) is zero. If the magnitude of the
correction is divided evenly betweenf5(1) and f7(3), then this leads to the condition that
1 f5(1)=−1 f7(3). Noting thate5 ·1ρu=−e7 ·1ρu, the final expressions for the exterior
distributions can be written as

f5(1) = f5(0)− f1(0)+ f1(5)− e5 ·1ρu/2

f6(2) = f6(0)− f2(0)+ f2(6)

f7(3) = f7(0)− f3(0)+ f3(7)− e7 ·1ρu/2.

The factor of 1/2 arises from the particular form of the displacement vectors,e5= (1,−1)
ande7= (−1,−1). The difficulty in generalizing this to an arbitrary boundary node is that
there will generally be either too many or too few exterior nodes to exactly decompose the
needed correction,1ρu. It is particularly difficult to come up with a general scheme for
describing a vector if the basis set is too large.

The scheme for implementing density-type boundary conditions can easily be generalized
to arbitrary boundary configurations. For each boundary configuration, the set of exterior
nodes is identified and paired with their mirror image through the boundary node to either
a fluid or another boundary node. The unpaired fluid and boundary nodes then create a net
change in the density at the boundary node that must cancelled by adding the appropriate
correction to the exterior nodes. This can be done using the weighting scheme described
above. For flux-type boundary conditions, the evaluation of the correction factor is compli-
cated by the need for a general scheme for partioning a vector amongst an overdetermined
nonorthogonal basis set. The development of such a scheme is currently under way.

4. RESULTS

To actually implement this algorithm, the equation of statep(ε, ρ) must be specified.
Although the pressure for a single component fluid is more conventionally specified as a
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function of temperature and density, an equivalent thermodynamic description can be given
in terms of specific energy and density. For most of the simulations described below, a
simple ideal gas equation of state is used. This has the form

p = 2

3
ρε. (4.1)

The temperature can be calculated from the energy via the equation

ε = 3

2
RT, (4.2)

whereR is the ideal gas constant. For these simulations, the temperature scale was chosen
so thatR was equal to 1. Once the equation of state is specified, it is also possible to write
down expressions for the thermal conductivity in closed form. For the ideal gas, the specific
energy is solely a function of temperature, so it is possible to write

κ∇ε = 1t

(
τε − 1

2

)
c2

D
ρ(1− d0)

3

2
R∇T. (4.3)

It follows immediately that the thermal conductivityk is

k = 1t

(
τε − 1

2

)
c2

D
ρ(1− d0)

3

2
R. (4.4)

All simulations described below were performed using the two-dimensional orthogonal
lattice lattice (d2q9 in Qianet al.’s notation [2]) withc=√2 and1t = 1. Because this lattice
is actually a two-dimensional projection of a four-dimensional lattice, the value ofD in the
equilibrium distribution functions is 4. The nearest-neighbor spacing on the original lattice
is
√

2 but after projecting down into two dimensions, the nearest-neighbor spacing is 1.
To test whether or not the lattice Boltzmann algorithm described above could model the

thermal diffusion equation, a simulation of thermal conduction between two plates with a
variable conductivity in the medium between the two plates was performed. For a thermal
conductivity of the form,

k = k0(1+ a0T), (4.5)

whereT is the local temperature andk0 anda0 are adjustable parameters, an analytic so-
lution of the thermal diffusion equation is available [21]. The temperature profile for this
system is

T = {(1+ a0T1)
2+ [(1+ a0T1)

2− (1+ a0T2)
2]x/L}1/2− 1

a0
, (4.6)

whereL is the distance between the two plates andx is the position between the two plates.
The location of plate 1 is atx= 0 and the location of plate 2 is atx= L. The temperatures
T1 andT2 are the temperatures at plates 1 and 2, respectively. The local value ofτε was
chosen by first determining the local value ofk and then inverting Eq. (4.4) to getτε . The
simulations were performed on a 53× 5 node lattice. The long axis of the simulation cell was
perpendicular to the surface of the two plates and the system was completely uniform along
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FIG. 2. Plot of temperature as a function of position for nonlinear conduction problem. The symbols are
calculated from the lattice Boltzmann simulation, the solid line is the analytic result.

the short axis (the system is actually one-dimensional and a two-dimensional simulation cell
was used only for convenience). Two of the nodes at the ends of the long axis were used as
exterior nodes to establish boundary conditions at the wall and periodic boundary conditions
were applied to the short axis. The average density in the cell was set at ¯ρ= 0.1 and the
temperatures at the surface of the plates wereT1= 0.02 andT2= 0.2. Both the parameters
a0 andk0 were set to 100. The temperature profile calculated from the simulation after
equilibrating to a stationary state is shown in Fig. 2 and is compared to the analytic solution
(4.6). The curves are indistinguishable from each other. This is not surprising, because the
hydrodynamic analysis shows that in the absence of any fluid motion (u= 0 everywhere)
the hydrodynamic equations for this model reduce down to the thermal diffusion equation
exactly.

To test the lattice Boltzmann algorithm for a system with a finite fluid velocity, simulations
of entry length behavior in flow down a channel were performed. The phenomena being
studied is the distance down the channel required for the fluid to reequilibrate to a new
temperature if the wall temperatures are abruptly changed from a temperatureT0 to a new
temperatureT1. A 200× 43 node lattice was used for these simulations. The long axis of
the simulation cell corresponds to the channel axis and the shorter axis is perpendicular
to the channel. Two of the lattice nodes in the direction normal to the flow where used as
exterior nodes to establish boundary conditions on each wall. The simulations were allowed
to run until a steady-state was achieved. For the entry length simulations described below,
the velocities were less than 0.34. This range corresponds to Reynolds numbers less than
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200, which is low enough that the flow could be considered incompressible. At the entrance
of the channel the temperature distribution is uniform, with a valueT0, and the velocity
profile is parabolic. At the channel exit the pressure was set equal to a constant and the
energy gradient was set equal to zero. Because the system is slightly compressible, the fluid
was allowed to flow down a short stretch of channel (20 lattice units) with the walls at
temperatureT0 in order for the fluid profile to relax completely. The wall temperature was
then abruptly changed to a new temperatureT1. The point at which the temperature change
occurred was considered the origin for the entry length behavior. Analytic solutions for the
Nusselt number Nu as a function of position have been obtained for this problem and can
be used to compare with the results of simulations [22]. (These solutions assume that the
fluid is incompressible, that axial diffusion is negligable, and that the parabolic flow profile
is uniform down the length of the channel.)

The requirement that axial diffusion is negligable is equivalent to the condition that the
product of the Reynolds number Re and the Prandtl number be greater than about 100. This
product is equal to the Peclet number, Pe. Simulations were run for a values of Pe equal
to 200 and 400. Two simulations at values of the Prandtl number equal to 1 and 2 were
run at flow conditions corresponding to a value of the Reynolds number of 200. The values
of τρ andτε for these simulations wereτρ = 0.77 andτε = 0.75 for Pr= 1 andτρ = 0.68
andτε = 1.0 for Pr= 2. The temperatureT1 was set at 0.101 andT2 was set at 0.100. The
Nusselt number is plotted in Fig. 3 as a function of the reduced positionx+ = (x/L)/Pe,

FIG. 3. Plot of Nusselt number, Nu, as a function of reduced positionx+ from the temperature jump. The
solid line is the analytic result, the dashed line is for a Prandtl number of 1 and the dotted line is for a Prandtl
number of 2.
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whereL is the channel half-width andx is the position from the temperature jump. The
analytic solution is also included in the figure. When plotted in this way, the Nusselt number
is a universal function ofx+, so both simulations should lie on the same curve. All systems
investigated, which included a number of values of Pr and Re not reported here, showed
the correct asymtotic behavior at largex+, and approached the limiting Nusselt number
of 7.54. Figure 3 focuses on the region near the temperature jump and exhibits quite good
agreement between the simulations and the analytic result. The analytic result is singular
at the origin, while the simulated curve, which in some sense represents the flux averaged
over a node spacing, is necessarily finite. This probably accounts for most of the deviation
between the analytic results and the lattice Boltzmann simulations near the origin. Some of
the difference may also be due to a small amount of axial diffusion in the simulations that
is not accounted for in the analytic result. As the Peclet number increases, the discrepancy
decreases.

Finally, simulations of Rayleigh–B´enard flow were performed to determine if the algo-
rithm could correctly model the effects of compressibility. Following Shan [8], the growth
rate of small perturbations was calculated as a function of the Rayleigh number, Ra, and
extrapolated back to zero growth rate to determine the critical Ralyeigh number. This could
then be compared with analytic results. The simulations were performed on a 53× 100
node lattice that was periodic along the long axis. One node at each of the ends of the short
axis was used as an exterior node to impose boundary conditions at the wall. A periodic
disturbance in this system corresponds to a reduced wave number of 3.142, which is only
slightly larger than the critical wavenumber,kc= 3.117 [23]. Gravity was introduced into
the simulation using a method similar to the one recently proposed by Buick and Greated
[24]. This involves modifying the distributionfi at r to

f ′i = fi + ρ̄D

bc2
ei · g, (4.7)

where ¯ρ is equal to(ρ(r)+ ρ(r +1tei ))/2 andg is the gravity vector. The average density
in this system wasρ= 1.0, the temperatures of the lower and upper plates wereT = 0.22 and
T = 0.18, respectively, and the magnitude of gravity was|g| =0.0001. The energy relax-
ation parameterτε was chosen so thatk= 0.01 everywhere, and the momentum relaxation
parameterτρ was varied in the range 0.88 to 0.92 to obtain different values of the Rayleigh
number.

Because the fluid is compressible, it is extremely difficult to set up an initial condition
that will grow smoothly enough that an unambiguous growth exponent can be extracted
from it. The initial conditions were prepared by first starting with a system that was com-
pletely uniform in the horizontal direction and allowing it to equilibrate under the influence
of the temperature gradient and gravity for 10,000 time steps. The uniformity of the ini-
tial condition in the horizontal direction prevented the growth of an instability during the
equilibration phase. After equilibration, a perturbation of the form

δρ = 1ρ cos(2πx/W) sin(πy/L) (4.8)

was added to the density. The width of the periodic simulation cell wasW andx was the
position along the direction parallel to the surfaces. The separation of the upper and lower
surfaces wasL andy was the height from the lower surface. The temperature was simul-
taneously adjusted so that the pressure at each point was the same as the pressure before the
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FIG. 4. Plots of max(ux) as a function of time step for different values of the Rayleigh number, Ra. Plots are
from simulations using ideal gas thermodynamics.

density perturbation was applied. The use of this particular form of the perturbation min-
imized oscillations of the fluid after the perturbation was applied that tended to mask the
growth rate of the perturbation. The maximum velocity in thex direction was monitored as a
function of time. After an initial period characterized by some damped oscillations superim-
posed on the growth curve, the maximum value ofux grew exponentially asux ∼ exp(ωt),
and the growth rateω could be extracted from fits of max(ux) versus time. The first 6000
steps after the application of the perturbation were discarded and the values ofω were
obtained from the values of max(ux) between 6000 and 10,000 steps after the perturbation.
The value of the critical Rayleigh number could then be determined by finding the value of
Ra for whichω= 0. Plots of max(ux) as a function of time are shown for several values of
Ra in Fig. 4. The oscillations at early times are quite evident, but the plots are smooth in
the regime from 6000 to 10,000 time steps. A fit to these curves was used to obtainω for
different values of Ra and a plot ofω as a function of Ra is shown in Fig. 5. The value of
the critical Rayleigh number, Rac, was calculated by extrapolating the curve down toω= 0.
Because the functionω(Ra) is slightly nonlinear, only the three points closest to the value
ω= 0 were used in the extrapolation. This gave a value of Rac= 1718 which compares very
favorably with the analytic value of Rac= 1707.76 [23].

The original stability analysis used to calculate Rac assumed ideal gas thermodynamics
for the fluid. To find out what effect using a more realistic model of the fluid has on the
evaluation of the critical Rayleigh number, the simulations described above were repeated
using a Van der Waals fluid for the equation of state. The pressure and energy for the Van
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FIG. 5. Plot of the perturbation growth rateω as a function of Rayleigh number, Ra. The linear fit to the
three points closest toω= 0 is also included. The circles are for simulations using ideal gas thermodynamics, the
squares are for simulations using the Van der Waals fluid.

der Waals fluid are given by [25, 26]

p = ρRT

1− bρ
− aρ2 (4.9)

ε = 3

2
RT− aρ, (4.10)

wherea andb are constants that are different for each fluid. These were set to the values
a= 9/8 andb= 1/3 (the critical temperature and density are both unity for this choice). The
contribution to the heat flux from density gradients was assumed to be small, and Eq. (4.4)
was still used to evaluateτε . The temperatures of the lower and upper plates were set at 0.9
and 0.6 and the average density was chosen to be 2.2. This corresponds to a liquid region of
the phase diagram. For this system, different Rayleigh numbers were obtained by varyingk
in the range 0.012 to 0.014. The remaining parameters were the same as for the simulations
of the ideal gas. The results are included in Fig. 5. The values ofω as a function of Ra
vary much more slowly for the Van der Waals liquid than for the ideal gas, but the value of
the intercept only increases slightly. The intercept obtained from the simulations is 1732,
which is still quite close to the predicted value of 1707.76.

5. CONCLUSIONS

A new lattice Boltzmann algorithm for simulating thermal flows in the absense of signif-
icant heating due to viscous dissipation has been presented. The algorithm is based on the
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introduction of a second distribution to model the flow of internal energy through the sys-
tem. This algorithm has the advantages that it only requires two speeds to simulate thermal
flow, so all the lattices that have been adapted for simulating incompressible Navier–Stokes
flow using the traditional lattice Boltzmann model can be used for simulating thermal flows.
Unlike algorithms based on treating the internal energy as a higher order moment of the
mass-momentum distribution, the two-distribution algorithm can be used with an arbitrary
equation of state. Previous algorithms for simulating thermal flow appear to be restricted
to an ideal gas equation of state. An additional feature of this lattice Boltzmann model is
that it can simulate a range of Prandtl numbers while still retaining the simple BGK form
for the collision operators.

The fact that the equation of state can be specified independently of the lattice speedc
also means that it is possible to change the time step1t without altering the rest of the
problem (although it is necessary to simultaneously adjustτρ andτε so that the transport
coefficientsν andκ remain the same). Increasingc results in a corresponding decrease in
1t . This can be used to obtain results for problems that are unstable using larger values
of 1t . The algorithm described here was able to obtain results using smaller values of the
time step for problems that were characterized as unstable [4, 14] using the original thermal
algorithm of Alexanderet al. [3].

The hydrodynamic behavior of the model has been determined and reproduces the con-
ventional hydrodynamic equations for thermal flow in the absence of viscous dissipation,
with the exception of two extra terms that appear in the momentum equation. However,
these terms vanish in the limit of small time step. The hydrodynamic analysis also provides
closed-form expressions that relate the parameters of the lattice Boltzmann model to the
macroscopic transport coefficients and the equation of state.

The algorithm was tested on several hydrodynamic problems for which analytic results
are available. These included nonlinear thermal conductivion between two plates, entry-
length behavior for flow in a channel, and a calculation of the critical Rayleigh number
for Rayleigh–Bénard convection between two plates. The simulations were in quantitative
agreement with the analytic results for all cases. The agreement with theory is particularly
encouraging in the case of the evaluation of the critical Rayleigh number, since this was
calculated entirely from transients. This suggests that the effect of the extra terms identified
in the momentum equation is small. The results for the Rayleigh-B´enard instability also
indicate that the thermal lattice Boltzmann algorithm contains all the necessary physics for
simulating natural convection.

The algorithm can be extended in a number of directions. Two areas that are currently
being pursued are correcting the thermal diffusion term so that the heat flux is proportional
to the gradient of the temperature for all fluids, not just those with ideal gas or hard sphere
thermodynamics, and combining the thermal model with a two-phase model so that it will
be possible to model the dynamics of thermally driven phase changes. Other areas for future
work include the inclusion of additional source terms in the energy equation to model the
conversion of mechanical energy to internal energy via pressure-volume work and viscous
dissipation.

APPENDIX

This appendix will describe in detail the derivation of the hydrodynamic equations gen-
erated by the lattice Boltzmann model described in the text. The derivation is based on a
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Chapman–Enskog multiple time scale expansion [12] of the equations of motion (2.4) and
(2.5). The distributionsfi andFi are assumed to have an expansion in a small parameterλ

of the form

fi = f eq
i + λ f (1)i + λ2 f (2)i +O(λ3) (A.1)

Fi = Feq
i + λF (1)

i + λ2F (2)
i +O(λ3). (A.2)

The dimensionless variableλ can be thought of as being the inverse of the time scale for
propagating hydrodynamic modes such as pressure waves. Diffusive modes, such as shear
relaxation, decay on a timescale of orderλ−2. The hydrodynamic length scale is of the order
λ−1.

The Chapman–Enskog expansion begins by expanding the equations of motion (2.4) and
(2.5) to second order aboutr andt . This gives

1t
∂

∂t
fi +1tei · ∇ fi + 1

2
1t2 ∂

2

∂t2
fi +1t2ei · ∇ ∂

∂t
fi

+ 1

2
1t2ei ei :∇∇ fi = − 1

τρ

(
fi − f eq

i

)
. (A.3)

1t
∂

∂t
Fi +1tei · ∇Fi + 1

2
1t2 ∂

2

∂t2
Fi +1t2ei · ∇ ∂

∂t
Fi

+ 1

2
1t2ei ei :∇∇Fi = − 1

τε

(
Fi − Feq

i

)
. (A.4)

The next step is to replace the variablesr andt by the variablesr1, t1, andt2 wherer = λr1,
t1= λt , andt2= λ2t . This is equivalent to replacing the derivatives with respect tor andt
by the expressions

∂

∂t
= λ ∂

∂t1
+ λ2 ∂

∂t2

∇ = λ∇1.

Using these relations in Eqs. (A.3) and (A.4), along with the expansions (A.1) and (A.2),
and equating the coefficients ofλ up to orderλ2 leads to the following set of four coupled
equations

∂

∂t1
f eq
i + ei · ∇1 f eq

i = −
1

1tτρ
f (1)i (A.5)

∂

∂t2
f eq
i +

∂

∂t1
f (1)i + ei · ∇1 f (1)i +

1

2
1t

∂2

∂t2
1

f eq
i +1tei · ∇1

∂

∂t1
f eq
i

+ 1

2
1tei ei :∇1∇1 f eq

i = −
1

1tτρ
f (2)i (A.6)

∂

∂t1
Feq

i + ei · ∇1Feq
i = −

1

1tτε
F (1)

i (A.7)

∂

∂t2
Feq

i +
∂

∂t1
F (1)

i + ei · ∇1F (1)
i +

1

2
1t

∂2

∂t2
1

Feq
i +1tei · ∇1

∂

∂t1
Feq

i

+ 1

2
1tei ei :∇1∇1Feq

i = −
1

1tτρ
F (2)

i . (A.8)
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The remaining step is to take moments of Eqs. (A.5)–(A.8) to generate the equations of
motion for the macroscopic continuum variablesρ, u, andε. The equilibrium distribution
functions already satisfy the moment relations (2.1)–(2.3). This can be verified by direct
calculation and using the lattice vector relation [12]

b∑
i=1

eiαeiβ = bc2

D
δαβ.

Use is also made of the property that sums over odd numbered products of lattice vec-
tors vanish. Because the equilibrium distributions satisfy Eqs. (2.1)–(2.3), the following
moments must vanish

b∑
i=0

f (n)i = 0 (A.9)

b∑
i=1

ei f (n)i = 0 (A.10)

b∑
i=0

F (n)
i = 0 (A.11)

whenevern≥ 1.
Summing the first-order equations (A.5) and (A.7) overi and making extensive use of

the moment relations (2.1)–(2.3) and (A.9)–(A.11) gives the first-order equations for the
density and energy

∂

∂t1
ρ + ∂1α(ρuα) = 0 (A.12)

∂

∂t1
(ρε)+ ∂1α(ρεuα) = 0. (A.13)

(A.14)

Multiplying Eq. (A.5) by the lattice vectorsei and summing overi gives the first-order
equation for the momentum

∂

∂t1
(ρuα)+ ∂1β(ρuαuβ) = −∂1αρ(1− d0)

c2

D
. (A.15)

Equation (A.15) follows directly from the moment relations and the definition off eq
i . It

also makes use of the identity

b∑
i=1

eiαeiβei γei δ = bc4

D(D + 2)
(δαβδγ δ + δαγ δβδ + δαδδβγ ),

which holds for any lattice with suitable isotropy properties [12].
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The second-order equations are more complicated. Summing Eq. (A.6) overi gives

∂

∂t2
ρ + 1

2
1t

∂

∂t1

[
∂

∂t1

b∑
i=0

f eq
i + ∂1α

b∑
i=1

eiα f eq
i

]

+ 1

2
1t∂1α

[
∂

∂t1

b∑
i=0

eiα f eq
i + ∂1α

b∑
i=0

eiαeiβ f eq
i

]
= 0. (A.16)

The first-order equations can be used to show that the bracketed terms in (A.16) vanish and
the second order equation for the density becomes

∂

∂t2
ρ = 0. (A.17)

Similar manipulations can be used to reduce the second-order momentum equation to

∂

∂t2
(ρuα)+ ∂1α

b∑
i=1

eiαeiβ f (1)i +
1

2
1t∂1β

[
∂

∂t1

b∑
i=1

eiαeiβ f eq
i + ∂1γ

b∑
i=1

eiαeiβei γ f eq
i

]
= 0.

(A.18)

The term proportional tof (1)i cannnot be eliminated using any of the moment relations
(A.9)–(A.11). However, it is possible to solve Eq. (A.5) forf (1)i in terms of thef eq

i and use
the result in Eq. (A.18) to get

∂

∂t2
(ρuα)− ∂1β1t

(
τρ − 1

2

)[
∂

∂t1

b∑
i=1

eiαeiβ f eq
i + ∂1γ

b∑
i=1

eiαeiβei γ f eq
i

]
= 0. (A.19)

Note thatτρ andτε are assumed to depend on space and time so that they can eventually be
made functions of the local temperature and density. Using the explicit definitions of the
f eq
i and neglecting any terms of orderu2 or higher leads to an equation entirely in terms of

the macroscopic continuum variables

∂

∂t2
(ρuα)− ∂1β1t

(
τρ − 1

2

)[
∂

∂t1
ρ(1− d0)

c2

D
δαβ

+ ∂1γ ρ
c2

D + 2
(δαβδγ δ + δαγ δβδ + δαδδβγ )uδ

]
= 0. (A.20)

The remaining step is to eliminate the derivative with respect tot1. This can be done by
using the first-order equations to replace all derivatives with respect tot1 with gradients
with respect tor1. Thet1 derivative in Eq. (A.20) becomes

∂

∂t1
ρ(1− d0)

c2

D
= −(1− d0)

c2

D
∂1α(ρuα)+ ρ c2

D

∂d0

∂ρ
∂1α(ρuα)

+ ρ c2

D

∂d0

∂ε
uα∂1αε. (A.21)

Combining (A.20) and (A.21) gives the final form for the second-order momentum
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equation

∂

∂t2
(ρuα)+ ∂1α1t

(
τρ − 1

2

)[
(1− d0)

c2

D
− ρ c2

D

∂d0

∂ρ

]
∂1β(ρuβ)

− ∂1α1t

(
τρ − 1

2

)
c2

D

∂d0

∂ε
ρuβ∂1βε − ∂1α1t

(
τρ − 1

2

)
c2

D + 2
∂1β(ρuβ)

− ∂1β1t

(
τρ − 1

2

)
c2

D + 2
∂1α(ρuβ)− ∂1β1t

(
τρ − 1

2

)
c2

D + 2
∂1β(ρuα) = 0. (A.22)

The second-order energy equation can be obtained using methods very similar to those
used to evaluate the second order momentum equation. Summing Eq. (A.8) overi leads to

∂

∂t2
(ρε)− ∂1α1t

(
τε − 1

2

)[
∂

∂t1
ρεuα + ∂1αρε(1− d0)

c2

D

]
= 0. (A.23)

All terms of orderu2 have been dropped. The first-order equations can be used to eliminate
the derivative with respect tot1. After again dropping all terms of orderu2, the final result
for the second-order energy equation is

∂

∂t2
(ρε)− ∂1α1t

(
τε − 1

2

)
ρ(1− d0)

c2

D
∂1αε = 0. (A.24)

Combining the first- and second-order equations and eliminating the variablest1, t2, andr1

in favor of t andr leads to the hydrodynamic equations (2.10)–(2.12).
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