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An algorithm has been developed for incorporating the effects of temperature into
lattice Boltzmann simulations. Instead of modeling the internal energy as a moment
of the distribution describing the flow of mass and momentum, the internal energy is
modeled as a scalar field using a second distribution. The energy is then coupled to the
density and momentum via the partition between moving and nonmoving particles
in a conventional two-speed model. The algorithm is tested against a number of sys-
tems for which analytic results are available. These include nonuniform conductivity
between two plates, entry length behavior for flow in a channel between two par-
allel plates, and critical Rayleigh number behavior in Rayleigindd convection.
Quantitative agreement is found in all case®.2000 Academic Press

1. INTRODUCTION

Lattice Boltzmann algorithms have recently begun to receive considerable attentio
an alternative to conventional computational fluid dynamics for simulating fluid flow
certain classes of problems. These algorithms are based on the idea of trying to mo
fluid by simulating a discretized one-patrticle phase space distribution function similar to
one described by the traditional Boltzmann equation. Describing a one-particle distribu
function at each point in space requires more information than just specifying the u:
hydrodynamic fields. However, the ease of implementing boundary conditions for comy
geometries makes lattice Boltzmann simulations attractive candidates for studying flo
porous media and the local nature of the algorithms allows them to be easily adapte
parallel architecture computers. Lattice Boltzmann simulations with good stability pr
erties have been developed that can quantitatively reproduce isothermal incompres
Navier—Stokes flow [1, 2].
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2 PALMER AND RECTOR

There has also been a great deal of interest in developing algorithms that can m
thermal transport in addition to mass flow, but incorporating the effects of temperature |
lattice Boltzmann simulations has proven to be unexpectedly difficult. The most obvi
approach, in analogy to the traditional Boltzmann equation, is to define the internal ene
to be a moment of the lattice Boltzmann distribution. An algorithm of this type based
multiple lattice speeds has been described [3], but it has poor stability properties [4]
can only simulate one value of the Prandtl number Pr (the ratio of kinematic viscos
to thermal diffusivity). An additional problem is that it may not be possible to mod
systems with nonideal gas thermodynamics. This algorithm has been generalized, at
in two dimensions, so that arbitrary Prandtl numbers can be simulated [4—6]. A sec
approach to modeling thermal flow using lattice Boltzmann techniques treats tempera
as a passive diffusing scalar [7, 8]. This has the advantage of simplicity and can ec
handle an arbitrary value of the Prandtl number but it cannot be used, excepadhhac
way, for systems where there are significant changes in fluid density with temperature.
recently, a two-distribution algorithm has been proposed bet. [9] that is similar to
the two-distribution approach outlined below. However, this model is limited to systel
with ideal gas thermodynamics.

This paper will present a detailed derivation of a new lattice Boltzmann algorithm 1
simulating thermal transport in fluid systems [10]. Quantitative comparisons of latti
Boltzmann simulations with analytic results for several thermal flow problems are a
presented. The internal energy of the system in this algorithm is described by a seconc
tribution that models the energy as a conserved scalar quantity, similar to the density.
internal energy can then be coupled back to the velocity and momentum fields in a relati
straightforward way. The hydrodynamic equations generated by this model are very ¢
to the standard hydrodynamic equations of continuum fluid dynamics in the absenc
viscous dissipation, and the algorithm naturally incorporates the thermodynamic prope
of the fluid. Simulations on several test systems give quantitative agreement with ana
results.

2. THERMAL LATTICE BOLTZMANN MODEL

Lattice Boltzmann simulations are an alternative to classical fluid dynamics that mo
fluid flow by simulating the behavior of the one-particle distribution function, instead
solving the usual continuum hydrodynamic equations for the conserved fields [11].
original Boltzmann equation describes the behavior of the one-particle distribution funct
f(r,v,t), where f represents the probability of finding a fluid particle at the poiat
time t, moving with velocityv. If this function is known, then local values of the density,
momentum, and temperature can be found by evaluating momenttsaofd these can
be used to reconstruct any other local thermodynamic properties through the equ:
of state. Instead of a continuous functiénthe lattice Boltzman distribution function is
discretized so that space is divided up into a regular lattice and the velocities are represe
by a finite number of displacements to neighboring sites. The displacement vectors
denoted byAteg, wherel =1, ..., b, At is the time step, ank represents the total number
of displacement directions. Thee have units of velocity and their magnitudeés| =c. A
zero displacement vectey is included in the set to represent particles with zero velocit)
The derivations described below assume that the lattices represented by the yeaters
suitably symmetric so that the tens@i@1 € andzib:le. €6 g areisotropic. As has been
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pointed out by several authors, suitably isotropic lattices are known only in two and f
dimensions [12, 13]. However, three-dimensional simulations can be recovered by usi
four-dimensional lattice and making the system completely uniform along one dimens

Two sets of distributionsf; andF;, are assigned to each site. The distributfomodels
the transport of mass and momentum and satisfies the two moment relations

b
> (2.1)

i=0
b

pou = e fi, (2.2)

wherep is the mass density andis the macroscopic velocity of the fluid. The distribution
F, models the movement of internal energy around the system and satisfies the mol
relation

pE = Z Fi, (2.3)

whereg is the specific energy per unit mass. Using a second distribution to model the en
is similar to the passive scalar approach proposed by Retrald14] and later by Shan [8].
However, this model differs from the passive scalar approach in that changes in the en
densitype are implicitly coupled back to the density—momentum distribution.

The distributions are updated at each time step by first performing a collision to obi
a new set of distributions and then displacing theand F; along the vectog to get a
new set of distributions at each site. The collisions and displacement of the distributions
summarized by the equations of motion

fi(r + Ateg,t + At) — fi(r,t) = —Ti(fi(r,t) L)) (2.4)
P

Fi(r + Ate,t + At) — F(r,t) = —%(Fi (r.t) — Fr.v), (2.5)
€

where ther are lattice sites antl is the discrete time. Following Chest al. [15], the
collision operators are assumed to take the familiar BGK form [16] and are character
for the two distributions by the dimensionless relaxation paramejeesid z.. Because
there is no explicit coupling between the equations of motion forfthend F;, the total
internal energy of the system is a conserved quantity, implying that there is no visc
heating in the system. For many problems of practical importance, the contribution fr
viscous heating is small.

To completely describe the algorithm, the equilibrium distributiéfi$and F*9 need to
be specified

1—do) pD(D +2) pD
f£ed _ pd—do)  pD pZAZT 4 _r= 26
i b +bcze' Ut —pa u-Ba - u-geuu (26
fe‘*_pdo—cﬁu u 2.7)
FO9 _ cf o (2.8)

= et (2.9)
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The variableD is the dimension of the system adglis a parameter that will be described
in more detail below. Thé,°? are identical to those developed for simulating a multiphase
multicomponent system [17], except that in this madigis not a constant. The choice of
equilibrium distribution for thé= means that at equilibrium, the energy flux is proportiona
to the mass flux.

From the equilibrium distributions (2.6) and (2.7) it can be seen that the paradgete
controls the partition between fast and slow moving particles. If the distributiaran
be considered to be a crude approximation to the Maxwell-Boltzmann distribution for
velocities of individual fluid particles, then as the temperature rises the velocity distribut
broadens and the fraction of particles assigned tofthiacreases relative to the fraction
assigned tdy. This can only happenif decreases. Similarly, as the temperature decreas
the fraction of particles assigned fg increases and, increases. This suggests tlogtis
related to the local values of the density and specific energy through the tempéraifre
the specific energy and the density are known at a given lattice site, then in principle
the temperature and pressure can be calculated once the equation of state is specifie
will be shown below, assuming thdy is related to energy and density only through the
temperature turns out to be too restrictive, and better results can be obtained by tre:
do as a general function &f and p. By constructing a model connectiralg to ¢ and p,
it is possible to incorporate the effects of thermal flow into a lattice Boltzmann algoritt
consisting of the following steps:

(i) Calculatep, u ande at each site using the moment relations (2.1)—(2.3).
(ii) Based on the value gf ande, calculate the value af, at each site via some as yet
unspecified relation.
(iiiy Evaluate f°*9 andF*9 at each site and complete the collision step.
(iv) Translate thef; andF;.

The key feature of this algorithm is thdg is allowed to vary as a function of the local
thermodynamic conditions at each site. This provides an implicit coupling between the
distributionsf; andF;.

The macroscopic hydrodynamic equations generated by this model can be derived
the Chapman—Enskog multiple time scale expansion[12]. Details of this derivation
supplied in the Appendix. The continuum equations for mass, momentum, and energy
result from this analysis have the form

a
ap + 804(10“&) =0 (210)

9 c?
ﬁ(pua) + aﬂ(puauﬁ) = _aap(l - dO)B - aagaﬂ(puﬂ) + 3a§,0uﬁaﬂ€

+ 05005 (pUa) + 9V (pUp) + 0, vBp(pUg)  (2.11)

0
§(pe) + 0y (p€Uy) = Oyk Dy€. (2.12)

The Greek indices label spatial coordinates and the Einstein convention of summing
repeated indices is used. The transport coefficients &, andx are defined as

1\ c?
v:At(tp—§> D12 (2.13)
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1 ¢? ad
1\ 2 ado

§=A<%—2>D86 (2.15)
1 2

k= At (n - 5) %p(l — do). (2.16)

The coefficientv is the kinematic viscosity and is related to the thermal conductivity.
Because andx depend on the independent functiapsindz,, the Prandtl number, which
is proportional to the ratio of andx, can be set to an arbitrary value. Comparing Eq. (2.1
with the conventional momentum equation from hydrodynamics indicates that the pres
can be identified with the quantity

2
(e, p) = p(L— ole, p)) 5. (2.17)

This can be trivially inverted to obtaidy as a function ot andp. For an ideal gagl is a
linear function ofe (or T), but for more complicated fluiddy depends on both andp.

The exact interpretation of the remaining transport coefficierdadé& is not so clear.
The term 9,¢dgpup can be combined with the terfigvagpug to give a kinematic bulk
viscosity ofv — ¢ [18]. This value of the bulk viscosity cannot be varied independently
the value ofv, because the valueg anddy are already constrained by the requirement
that they generate the correct valuesvodind the equation of state. However, for mos
systems the effect of the bulk viscosity is small. Both terms can be made small by adus
the time stepAt. For a given physical problem with a fixed grid, the time step can |
made smaller by decreasingt while simultaneously increasing the lattice speedhe
relaxation parametens, andz. must also be adjusted so that the dissipation coefficients
and« remain constant. Using Eqg. (2.17) fdg, the coefficientg and« can be rewritten
as

_ 1)ap
¢ = At (r,, — 2) o (2.18)
. 1\ 19p

Note that neither of these expressions is proportionaf twhile v is. Thus, if a smaller
time step is used, corresponding to a larger value, dhen the terms containing and
& must become smaller relative to the viscous dissipation term. For small erduidine
momentum equation will reduce to

9 c?
ﬁ(pua) + 0g(pUgUg) = —3,0(1 — dO)B + dpvdg(pUy)

+ 0V, (pUg) + duvg(pUg). (2.20)

This is just the usual momentum equation for fluid flow [11], although in this case t
kinematic bulk viscosity is equal to the kinematic shear viscosity.
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3. BOUNDARY CONDITIONS

The formalism described here for implementing boundary conditions is a modificatior
the bounce-back boundary condition, similar in spirit to the boundary conditions develo
by Maieret al.[19] and Zou and He [20]. It assumes that all boundaries pass throug|
set of lattice sites that are connected to each other via the displacement vat&r3he
approach is illustrated in detail for a flat interface using the two-dimensional orthogo
lattice; the generalization to other lattices and surfaces with corners, kinks, etc. will
discussed briefly. The boundary conditions used in this study fall into two categories, ei
a value is specified on the boundary (Dirichlet conditions) or a flux is specified on f
boundary (Neumann conditions). For fluid flow these become specified pressure (den
and specified velocity, for the energy these become specified temperature and spe
energy flux.

Dirichlet boundary conditions are illustrated for tiieby specifying a constant density
at a boundary node. The method for specifying a constant energy at a boundary node |
the F is completely analogous. The distributidnat the node must satisfy the condition

po = Z fi, (3.1)

wherepyg is the specified density. The geometry for a boundary node on a flat interface
the two-dimensional orthogonal lattice is illustrated in Fig. 1. The node at the center is
boundary node of interest and is labeled node 0, the neighboring nodes are labeled r
1-8. Nodes 1-3 are exterior nodes lying outside the fluid region that are used to help fi
boundary conditions at node 0, nodes 4 and 8 are two adjacent boundary nodes, and |
5-7 are fluid nodes that stream part of their distributions to node 0. The distributions
nodes 1-3 need to be specified after the collision step but before the streaming step.
the parts of the distributions on nodes 1-3 that are streamed to node 0 need to be spe«
For the remaining discussion, the following notation is useful. The displacement dir
tions are labeled by=1, ..., 8 and correspond to the eight neighbors of node 0 show
in Fig. 1. The distributionf; (j) refers to the distribution on nodgin the directioni.
The portion of the distribution on node 1 that streams towards node O isfgfigh The

1 2 3
C)\\ (i) ’/CD Exterior
..... @_> .4_@ Boundary

(J/( Cg ‘\O Interior
7 6 5

FIG.1. Schematic diagram of boundary node for a flat boundary using the two-dimensional orthogonal lat
The node at the center is node 0.
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determination of the distributions on 1-3 consists of two steps. The first consists of pai
up each of the exterior nodes with its mirror image through node 0. Thus, node 1 is pa
with node 5, node 2 is paired with node 6, and node 3 is paired with node 7. If the distribu
at node 0 satisfies the boundary condition (3.1) before the streaming step, then to a
approximation the boundary condition after the streaming step is satisfied by requiring
the sum of the two opposin§ leaving the boundary node equals the sum of the fwo
entering the boundary node. For the 1-5 pair, this is equivalent to the expression

fs5(1) + f1(5) = f5(0) + f1(0).

Only the fs(1) term is unknown, so this equation can be used to fi(d). Similar expres-
sions can be used to finig(2) and f7(3). If there was no net contribution to the density due
to flow along the boundary, then these valuesfig), fs(2), and f7(3) would be enough
to ensure that condition (3.1) holds after the streaming step. However, because there
guarantee thafg(4) + f4(8) = fg(0) + f4(0), the distributions at nodes 1-3 must be ad
justed slightly to correct for the change in density due to flow along the boundary. T
correction is the second step in determining the distributions at the exterior points.
The change in the density due to flow along the boundary is labeled as

Ap = fg(4) + 4(8) — f5(0) — f4(0).

The change in density is distributed among the distributions on nodes 1-3 by an am
that is proportional to the weight that each lattice direction carries. To understand v
these weights are, it is necessary to briefly consider what happens when the ori
four-dimensional hypercubic face-centered (HCFC) lattice is projected down into the t
dimensional orthogonal lattice. The nearest-neighbor sites of the HCFC lattice consi:
all possible four-dimensional vectors with integer components whose total lengfB. is
This includes vectors such as, (10, 0), (1, -1, 0, 0), and (0—1, 0, —1). Four of the
original HCFC vectors project down to each of the axial vectors in the two-dimensio
orthogonal lattice, while only one of the original HCFC vectors projects down to each
the diagonal lattice vectors. Thus, the weightassigned to each of these directions i
wi=w3=ws=w7y=1 andw,; =wys = wg =wg=4. Defining

Wiot = W5 + We + W7
then the final expressions fdg(1), fs(2), and f;(3) are

fs5(1) = f5(0) + f2(0) — f1(5) — Apws/wior
f6(2) = f6(0) + f2(0) — f2(6) — Apwe/wior
f2(3) = 17(0) + f3(0) — f3(7) — Apw7/wier.

The method for specifying a flux-type boundary condition is similar to that for specifyi
a density-type boundary condition, although correcting the distributions for the flow alc
the boundary is more complicated. A general method for evaluating the correction du
flow along the boundary has not been worked out, but the correction for the specific «
of a flat boundary is described below. The method is illustrated for the distribdtitor
the case when the velocityhas a valuelg at a surface. Prior to streaming, the momentur
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density at the surface has the value

b
pUo=> & fi. (3.2)
i=1

Pairing the product of thé ande means that pairs such as the distributions at nodes 1 a
5 must satisfy an equation of the form

fs5(1) — f1(5) = f5(0) — f1(0).

The difference occurs instead of the sum becayse—es. The change in momentum at
node 0 due to flow along the boundary is

Apu = €4 f4(8) + egfg(4) — €4 4(0) + e f5(0). (3-3)

There will also be a slight change in the density at node 0 after the streaming step to a
densityp’, which causes an additional change in the momentum. However, in most cas
can be assumed that this change is small angthatp. From Eq. (3.3), itis clear thatpu

is parallel to the surface. Therefore, the correctiorigi®) is zero. If the magnitude of the
correction is divided evenly betweefg(1) and f(3), then this leads to the condition that
Afs(1) = —Af7(3). Noting thates - Apu = —e; - Apu, the final expressions for the exterior
distributions can be written as

fs5(1) = f5(0) — f2(0) + f1(5) —&s5- Apu/2
f6(2) = f5(0) — f2(0) + f2(6)
f2(3) = 17(0) — f3(0) + f3(7) —e7- Apu/2.

The factor of ¥2 arises from the particular form of the displacement vectsrs, (1, —1)
ande; = (—1, —1). The difficulty in generalizing this to an arbitrary boundary node is the
there will generally be either too many or too few exterior nodes to exactly decompose
needed correctiompu. It is particularly difficult to come up with a general scheme fol
describing a vector if the basis set is too large.

The scheme forimplementing density-type boundary conditions can easily be general
to arbitrary boundary configurations. For each boundary configuration, the set of exte
nodes is identified and paired with their mirror image through the boundary node to eit
a fluid or another boundary node. The unpaired fluid and boundary nodes then create
change in the density at the boundary node that must cancelled by adding the approy
correction to the exterior nodes. This can be done using the weighting scheme descl
above. For flux-type boundary conditions, the evaluation of the correction factor is com
cated by the need for a general scheme for partioning a vector amongst an overdetern
nonorthogonal basis set. The development of such a scheme is currently under way.

4. RESULTS

To actually implement this algorithm, the equation of stpte, p) must be specified.
Although the pressure for a single component fluid is more conventionally specified
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function of temperature and density, an equivalent thermodynamic description can be ¢
in terms of specific energy and density. For most of the simulations described belo
simple ideal gas equation of state is used. This has the form

2

p= 5,06. (4.1)

The temperature can be calculated from the energy via the equation

€= 3 RT, (4.2)
2
whereR is the ideal gas constant. For these simulations, the temperature scale was ct
so thatR was equal to 1. Once the equation of state is specified, it is also possible to w
down expressions for the thermal conductivity in closed form. For the ideal gas, the spe
energy is solely a function of temperature, so it is possible to write

1\ ¢? 3
kVe = At <r€ — 2)D,o(l—do)2 RVT. 4.3)
It follows immediately that the thermal conductivityis

2
k= At(te - ;)%p(l—do)zR. (4.4)
All simulations described below were performed using the two-dimensional orthogo
lattice lattice (d2g9 in Qiaat al s notation [2]) withc = /2 andAt = 1. Because this lattice
is actually a two-dimensional projection of a four-dimensional lattice, the val@eintthe
equilibrium distribution functions is 4. The nearest-neighbor spacing on the original latt
is +/2 but after projecting down into two dimensions, the nearest-neighbor spacing is 1

To test whether or not the lattice Boltzmann algorithm described above could model
thermal diffusion equation, a simulation of thermal conduction between two plates wit
variable conductivity in the medium between the two plates was performed. For a ther
conductivity of the form,

k =ko(1+ agT), (4.5)

whereT is the local temperature arkg anday are adjustable parameters, an analytic sc
lution of the thermal diffusion equation is available [21]. The temperature profile for tt
system is

2 2 2 1/2 _
T - {L+a9Ty) +[(1+aoT1)ao 1+ agTr)“Ix/L} 17 (4.6)

wherelL is the distance between the two plates &iglthe position between the two plates.
The location of plate 1 is at=0 and the location of plate 2 is &= L. The temperatures
T, and T, are the temperatures at plates 1 and 2, respectively. The local vatuevals
chosen by first determining the local valuekodnd then inverting Eq. (4.4) to get. The
simulations were performed on a 53 node lattice. The long axis of the simulation cell wa:
perpendicular to the surface of the two plates and the system was completely uniform a
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FIG. 2. Plot of temperature as a function of position for nonlinear conduction problem. The symbols
calculated from the lattice Boltzmann simulation, the solid line is the analytic result.

the short axis (the system is actually one-dimensional and a two-dimensional simulation
was used only for convenience). Two of the nodes at the ends of the long axis were usi
exterior nodes to establish boundary conditions at the wall and periodic boundary condit
were applied to the short axis. The average density in the cell was get @il and the
temperatures at the surface of the plates Wigee 0.02 andT, = 0.2. Both the parameters
ay andky were set to 100. The temperature profile calculated from the simulation af
equilibrating to a stationary state is shown in Fig. 2 and is compared to the analytic solu
(4.6). The curves are indistinguishable from each other. This is not surprising, becaus:
hydrodynamic analysis shows that in the absence of any fluid matierQ(everywhere)
the hydrodynamic equations for this model reduce down to the thermal diffusion equa
exactly.

Totestthe lattice Boltzmann algorithm for a system with afinite fluid velocity, simulatiol
of entry length behavior in flow down a channel were performed. The phenomena be
studied is the distance down the channel required for the fluid to reequilibrate to a
temperature if the wall temperatures are abruptly changed from a tempéefatora new
temperaturél;. A 200 x 43 node lattice was used for these simulations. The long axis
the simulation cell corresponds to the channel axis and the shorter axis is perpendi
to the channel. Two of the lattice nodes in the direction normal to the flow where usec
exterior nodes to establish boundary conditions on each wall. The simulations were allo
to run until a steady-state was achieved. For the entry length simulations described be
the velocities were less than 0.34. This range corresponds to Reynolds numbers less
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200, which is low enough that the flow could be considered incompressible. At the entre
of the channel the temperature distribution is uniform, with a valyeand the velocity
profile is parabolic. At the channel exit the pressure was set equal to a constant an(
energy gradient was set equal to zero. Because the system is slightly compressible, the
was allowed to flow down a short stretch of channel (20 lattice units) with the walls
temperaturdy in order for the fluid profile to relax completely. The wall temperature we
then abruptly changed to a new temperaflireThe point at which the temperature change
occurred was considered the origin for the entry length behavior. Analytic solutions for
Nusselt number Nu as a function of position have been obtained for this problem and
be used to compare with the results of simulations [22]. (These solutions assume tha
fluid is incompressible, that axial diffusion is negligable, and that the parabolic flow pro
is uniform down the length of the channel.)

The requirement that axial diffusion is negligable is equivalent to the condition that |
product of the Reynolds number Re and the Prandtl number be greater than about 100
product is equal to the Peclet number, Pe. Simulations were run for a values of Pe €
to 200 and 400. Two simulations at values of the Prandtl number equal to 1 and 2 v
run at flow conditions corresponding to a value of the Reynolds number of 200. The val
of 7, and . for these simulations were, =0.77 andr. =0.75 for Pr=1 andz, =0.68
andt. = 1.0 for Pr=2. The temperaturé; was set at 0.101 ant} was set at 0.100. The
Nusselt number is plotted in Fig. 3 as a function of the reduced positica (x/L)/Pe,

50 1 1 4 1

o

"

U

B

20 [ —— Theoretical ]

! — —-Pr=1, Re=200

e Pr=2, Re=200
= H
Z. H ]
T 30 i i
2
g
=
Z
=
D] -
A J
j=]
Z, 4

00 [ M M 1 L L L L L 1 L M 1 i L 1 L i L L
0.000 0.005 0.010 0.015 0.020

"Reduced Position (x*)

FIG. 3. Plot of Nusselt number, Nu, as a function of reduced positiorirom the temperature jump. The
solid line is the analytic result, the dashed line is for a Prandtl number of 1 and the dotted line is for a Pre
number of 2.
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wherelL is the channel half-width and is the position from the temperature jump. The
analytic solution is also included in the figure. When plotted in this way, the Nusselt num
is a universal function at*, so both simulations should lie on the same curve. All systen
investigated, which included a number of values of Pr and Re not reported here, shc
the correct asymtotic behavior at larg&, and approached the limiting Nusselt numbe
of 7.54. Figure 3 focuses on the region near the temperature jump and exhibits quite ¢
agreement between the simulations and the analytic result. The analytic result is sing
at the origin, while the simulated curve, which in some sense represents the flux aver:
over a node spacing, is necessarily finite. This probably accounts for most of the devia
between the analytic results and the lattice Boltzmann simulations near the origin. Son
the difference may also be due to a small amount of axial diffusion in the simulations t
is not accounted for in the analytic result. As the Peclet number increases, the discrep
decreases.

Finally, simulations of Rayleigh-&1ard flow were performed to determine if the algo-
rithm could correctly model the effects of compressibility. Following Shan [8], the grow
rate of small perturbations was calculated as a function of the Rayleigh number, Ra,
extrapolated back to zero growth rate to determine the critical Ralyeigh number. This cc
then be compared with analytic results. The simulations were performed orx 4 &3
node lattice that was periodic along the long axis. One node at each of the ends of the :
axis was used as an exterior node to impose boundary conditions at the wall. A peri
disturbance in this system corresponds to a reduced wave number of 3.142, which is
slightly larger than the critical wavenumbé&g,= 3.117 [23]. Gravity was introduced into
the simulation using a method similar to the one recently proposed by Buick and Gre:
[24]. This involves modifying the distributioff; atr to

fl=fi+ %e. -g, 4.7
wherep is equal to(p(r) + p(r + Ateg))/2 andg is the gravity vector. The average density
in this systemwag = 1.0, the temperatures of the lower and upper plates Wetd.22 and
T =0.18, respectively, and the magnitude of gravity Wgis= 0.0001. The energy relax-
ation parametet, was chosen so that=0.01 everywhere, and the momentum relaxatior
parameter, was varied in the range 0.88 to 0.92 to obtain different values of the Raylei
number.

Because the fluid is compressible, it is extremely difficult to set up an initial conditi
that will grow smoothly enough that an unambiguous growth exponent can be extra
from it. The initial conditions were prepared by first starting with a system that was co
pletely uniform in the horizontal direction and allowing it to equilibrate under the influen
of the temperature gradient and gravity for 10,000 time steps. The uniformity of the i
tial condition in the horizontal direction prevented the growth of an instability during tt
equilibration phase. After equilibration, a perturbation of the form

3p = Apco2rx/W)sin(ry/L) (4.8)

was added to the density. The width of the periodic simulation cellWamndx was the

position along the direction parallel to the surfaces. The separation of the upper and Ic
surfaces wat andy was the height from the lower surface. The temperature was simi
taneously adjusted so that the pressure at each point was the same as the pressure be



LATTICE BOLTZMANN ALGORITHM 13

LI B S NN B D D M I N e e B RS S M B N S B BN e BB B S B NN B B N R

Ra=1973.68
— — -Ra=1923.08
38 F — = ~Ra=1875.00
—----Ra=1829.27
----- Ra=1785.71

Max(u, ) (x10%

---------

P
|l|,|‘l\'l‘l~'
FH” 4

-!; ti vt

3.0 T EFEEEE BT APAPEPEE APET AP A BT EPAPIE AP AT A AT BT

2000 3000 4000 5000 6000 7000 8000 9000 10000

Time step

FIG. 4. Plots of maxq,) as a function of time step for different values of the Rayleigh number, Ra. Plots ¢
from simulations using ideal gas thermodynamics.

density perturbation was applied. The use of this particular form of the perturbation n
imized oscillations of the fluid after the perturbation was applied that tended to mask
growth rate of the perturbation. The maximum velocity inxtdérection was monitored as a
function of time. After an initial period characterized by some damped oscillations super
posed on the growth curve, the maximum value,pfrew exponentially ag, ~ exp(wt),
and the growth rate could be extracted from fits of max() versus time. The first 6000
steps after the application of the perturbation were discarded and the valuewefe
obtained from the values of max() between 6000 and 10,000 steps after the perturbatic
The value of the critical Rayleigh number could then be determined by finding the value
Ra for whichw = 0. Plots of max(y) as a function of time are shown for several values c
Ra in Fig. 4. The oscillations at early times are quite evident, but the plots are smoot
the regime from 6000 to 10,000 time steps. A fit to these curves was used to oltain
different values of Ra and a plot af as a function of Ra is shown in Fig. 5. The value o
the critical Rayleigh number, Ravas calculated by extrapolating the curve dowa te 0.
Because the function(Ra) is slightly nonlinear, only the three points closest to the valt
o =0 were used in the extrapolation. This gave a value @ER&718 which compares very
favorably with the analytic value of Re= 170776 [23].

The original stability analysis used to calculate.Rasumed ideal gas thermodynamic:
for the fluid. To find out what effect using a more realistic model of the fluid has on t
evaluation of the critical Rayleigh number, the simulations described above were repe
using a Van der Waals fluid for the equation of state. The pressure and energy for the
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FIG. 5. Plot of the perturbation growth rate as a function of Rayleigh number, Ra. The linear fit to the
three points closest ® = 0 is also included. The circles are for simulations using ideal gas thermodynamics,
squares are for simulations using the Van der Waals fluid.

der Waals fluid are given by [25, 26]

pRT 2
- - 4.
p 1 b ap (4.9)
3
e:ERT—wL (4.10)

wherea andb are constants that are different for each fluid. These were set to the val
a=9/8 andb =1/3 (the critical temperature and density are both unity for this choice). Tl
contribution to the heat flux from density gradients was assumed to be small, and Eq. (
was still used to evaluate. The temperatures of the lower and upper plates were set at |
and 0.6 and the average density was chosen to be 2.2. This corresponds to a liquid regi
the phase diagram. For this system, different Rayleigh numbers were obtained by karyi
inthe range 0.012 to 0.014. The remaining parameters were the same as for the simule
of the ideal gas. The results are included in Fig. 5. The values & a function of Ra
vary much more slowly for the Van der Waals liquid than for the ideal gas, but the value
the intercept only increases slightly. The intercept obtained from the simulations is 17
which is still quite close to the predicted value of 1707.76.

5. CONCLUSIONS

A new lattice Boltzmann algorithm for simulating thermal flows in the absense of sign
icant heating due to viscous dissipation has been presented. The algorithm is based c
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introduction of a second distribution to model the flow of internal energy through the s
tem. This algorithm has the advantages that it only requires two speeds to simulate the
flow, so all the lattices that have been adapted for simulating incompressible Navier—St
flow using the traditional lattice Boltzmann model can be used for simulating thermal floy
Unlike algorithms based on treating the internal energy as a higher order moment of
mass-momentum distribution, the two-distribution algorithm can be used with an arbitr
equation of state. Previous algorithms for simulating thermal flow appear to be restric
to an ideal gas equation of state. An additional feature of this lattice Boltzmann mode
that it can simulate a range of Prandtl numbers while still retaining the simple BGK fo
for the collision operators.

The fact that the equation of state can be specified independently of the latticecspe
also means that it is possible to change the time ategvithout altering the rest of the
problem (although it is necessary to simultaneously adjusindz. so that the transport
coefficientsy andx remain the same). Increasiogesults in a corresponding decrease ir
At. This can be used to obtain results for problems that are unstable using larger ve
of At. The algorithm described here was able to obtain results using smaller values o
time step for problems that were characterized as unstable [4, 14] using the original the
algorithm of Alexandeet al.[3].

The hydrodynamic behavior of the model has been determined and reproduces the
ventional hydrodynamic equations for thermal flow in the absence of viscous dissipat
with the exception of two extra terms that appear in the momentum equation. Howe
these terms vanish in the limit of small time step. The hydrodynamic analysis also prov
closed-form expressions that relate the parameters of the lattice Boltzmann model t
macroscopic transport coefficients and the equation of state.

The algorithm was tested on several hydrodynamic problems for which analytic res
are available. These included nonlinear thermal conductivion between two plates, el
length behavior for flow in a channel, and a calculation of the critical Rayleigh numt
for Rayleigh—Enard convection between two plates. The simulations were in quantital
agreement with the analytic results for all cases. The agreement with theory is particu
encouraging in the case of the evaluation of the critical Rayleigh number, since this
calculated entirely from transients. This suggests that the effect of the extra terms ident
in the momentum equation is small. The results for the Rayleighad instability also
indicate that the thermal lattice Boltzmann algorithm contains all the necessary physic:
simulating natural convection.

The algorithm can be extended in a number of directions. Two areas that are curre
being pursued are correcting the thermal diffusion term so that the heat flux is proportic
to the gradient of the temperature for all fluids, not just those with ideal gas or hard spl
thermodynamics, and combining the thermal model with a two-phase model so that it
be possible to model the dynamics of thermally driven phase changes. Other areas for f
work include the inclusion of additional source terms in the energy equation to model
conversion of mechanical energy to internal energy via pressure-volume work and vis
dissipation.

APPENDIX

This appendix will describe in detail the derivation of the hydrodynamic equations g
erated by the lattice Boltzmann model described in the text. The derivation is based
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Chapman—Enskog multiple time scale expansion [12] of the equations of motion (2.4)
(2.5). The distributiond; andF; are assumed to have an expansion in a small paramete
of the form

fi = £594+ A5 + 2212 + 013 (A1)

Fi = FY94aFY +22F? £ 003, (A.2)
The dimensionless variablecan be thought of as being the inverse of the time scale f
propagating hydrodynamic modes such as pressure waves. Diffusive modes, such as
relaxation, decay on a timescale of ordef. The hydrodynamic length scale is of the orde
AL

The Chapman—Enskog expansion begins by expanding the equations of motion (2.4

(2.5) to second order aboutindt. This gives

Ataf-+At Vf-+1At232f-+At2 vaf-
at N P27 gt Ve

1 1
+§Atzae, VY= ——(fi - f9). (A.3)
P
AtLE 1 Ate - VF 4 }Atza—zF + At - VOF
at R T AT
1 2 . 1 eq
+§At ee:VVF = _;(Fi - F9). (A.4)

The next step is to replace the variablemndt by the variables, t;, andt, wherer = Ar;,
t; = At, andt, = A%t. This is equivalent to replacing the derivatives with respectaadt
by the expressions

0 _ 0 20
at oy at
V = AVi.

Using these relations in Egs. (A.3) and (A.4), along with the expansions (A.1) and (A.

and equating the coefficients bfup to orderi? leads to the following set of four coupled
equations

d 1
— %4 g -V f=——— P A5
3t1 i + € 11 At‘[p i ( )
0 .eq. 9 .a y 1. 0% . d e
— {9 — @D VP + ZAt— 159+ Atg - Vi — £
ot ey eVl Aty i At Vag
+ :—LAtela A VZA VAR A e 10 (A.6)
2 ! Atz, !
0 _e e 1 _@
—F% ¢ ViF9=—_—F® A7
o T8 Van Atr, A1
d eq O _g y 1 9% ¢ d _e
—F9 —FP+e - viFY + At F 4 Ate - Vi —F
A R T A I R P
+}Ate.e1:V1V1F-eq=——1 F. (A.8)
2 ! Att, !
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The remaining step is to take moments of Egs. (A.5)—(A.8) to generate the equatior
motion for the macroscopic continuum variabjgsal, ande. The equilibrium distribution
functions already satisfy the moment relations (2.1)—(2.3). This can be verified by dil
calculation and using the lattice vector relation [12]

Use is also made of the property that sums over odd numbered products of lattice
tors vanish. Because the equilibrium distributions satisfy Egs. (2.1)—(2.3), the follow
moments must vanish

b

> =0 (A.9)
i=0
b
Y ef®=0 (A.10)
i=1
b
> FP=o0 (A.11)

i=0

wheneven > 1.

Summing the first-order equations (A.5) and (A.7) ovand making extensive use of
the moment relations (2.1)—(2.3) and (A.9)—(A.11) gives the first-order equations for
density and energy

a
——p + 01 (pUy) =0 (A.12)
oty
a
E(pe) + 014 (0€Uy) = 0. (A13)
1

(A.14)

Multiplying Eqg. (A.5) by the lattice vectors, and summing over gives the first-order
equation for the momentum

2

0 (o
BT(/OUa) + d15(pUgUg) = — 01, 0(1 — dO)B' (A.15)
1

Equation (A.15) follows directly from the moment relations and the definitior, f It
also makes use of the identity

b
bc*
Zeaaﬁayaé = m(saﬂayé + 801)/8/35 + 8a58ﬁy)a

i=1

which holds for any lattice with suitable isotropy properties [12].
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The second-order equations are more complicated. Summing Eq. (A.6) gives

0

1 ala b
—pF+ SAt—|— ) 5949 .5
T atllatl.Z o MZP‘“ '

+ lAta
2 lo

b
o Zaa 94 01 Y @8 £ ] —0. (A.16)

i=0

The first-order equations can be used to show that the bracketed terms in (A.16) vanist
the second order equation for the density becomes

9
—p=0. A.17
ol (A.17)

Similar manipulations can be used to reduce the second-order momentum equation tc

1
Atdg

@
(pua) + 1o Zaaaﬂf +5

i=1

b
ot Zeaaﬂ T+01, ) ea8pe, fieq] =0.
i=1

(A.18)

The term proportional tcfi(l) cannnot be eliminated using any of the moment relatior
(A.9)—(A.11). However, it is possible to solve Eq. (A.5) f6f* in terms of thef.*® and use
the resultin Eq. (A.18) to get

b
0 eq
(o) - al,,m<rp )lat > (4 0, 3 _euee ]=o. (A.19)

i=1

Note thatr, andz, are assumed to depend on space and time so that they can eventuall
made functions of the local temperature and density. Using the explicit definitions of
f°9and neglecting any terms of ordet or higher leads to an equation entirely in terms o
the macroscopic continuum variables

a(u)aAt ! a(1 d)c28
e a) T Tp — & ae - ~ Y
ot " WA T 2) P T D
C2
+ 31]/,0 D 2(8a/38y,3 + 8ay8lg5 + 3a55/3y)U5:| =0. (A.20)
The remaining step is to eliminate the derivative with respett.tdhis can be done by
using the first-order equations to replace all derivatives with respegtviith gradients

with respect ta';. Thet; derivative in Eq. (A.20) becomes

8(1 d) —(1 d)B(U)+ Zada( )
3t1p 0 0 10 (O Uqy PDa 10 (OUy
c? ddy
— w0 A.21
+'OD8 Uy €. ( )

Combining (A.20) and (A.21) gives the final form for the second-order momentu
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equation

9 Uy + B At 1 1— d)c—z— Cadol,  ouy)
atzpa lo Tp — 0 pDa 18(PUg

czado 1\ c?
— 01, At r/,—z D 7e ——pUgdige — A At | 7, — > malﬁ(puﬂ)

1\ c? 1\ c?
— g At( 1) = 5 ) 5 tlpup) — At (1, — 5 ) 550t = 0. (A22)

The second-order energy equation can be obtained using methods very similar to t
used to evaluate the second order momentum equation. Summing Eq. (A.8)eads to

0 1 0 c?
8—t2(pe) — 014 At (‘L’e - 5) {Bt €Uy + 014 pe(1 — do)—} =0. (A.23)

All terms of orderu? have been dropped. The first-order equations can be used to elimir
the derivative with respect tip. After again dropping all terms of ordef, the final result
for the second-order energy equation is

d 1 c?
E(pe) — 01 AL (176 > 1- do) 310,6 =0. (A.24)
2

Combining the first- and second-order equations and eliminating the varighlesgndr
in favor oft andr leads to the hydrodynamic equations (2.10)—(2.12).
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